Symbolic Artificial Intelligence, Connectionist Networks & Beyond
نویسندگان
چکیده
The goal of Artificial Intelligence, broadly defined, is to understand and engineer intelligent systems. This entails building theories and models of embodied minds and brains -both natural as well as artificial. The advent of digital computers and the parallel development of the theory of computation since the 1950s provided a new set of tools with which to approach this problem -through analysis, design, and evaluation of computers and programs that exhibit aspects of intelligent behavior -such as the ability to recognize and classify patterns; to reason from premises to logical conclusions; and to learn from experience. The early years of artificial intelligence saw some people writing programs that they executed on serial stored--program computers (e.g., Newell, Shaw and Simon, 1963; Feigenbaum, 1963); Others (e.g., Rashevsky, 1960; McCulloch and Pitts, 1943; Selfridge and Neisser, 1963; Uhr and Vossler, 1963) worked on more or less precise specifications of more parallel, brain--like networks of simple processors (reminiscent of today's connectionist networks) for modelling minds/brains; and a few took the middle ground (Uhr, 1973; Holland, 1975; Minsky, 1963; Arbib, 1972; Grossberg, 1982; Klir, 1985). It is often suggested that two major approaches have emerged -symbolic artificial intelligence (SAI) and artificial neural networks or connectionist networks (CN) and some (Norman, 1986; Schneider, 1987) have even suggested that they are fundamentally and perhaps irreconcilably different. Others have argued that CN models have little to contribute to our efforts to understand cognitive processes (Fodor and Pylyshyn, 1988). A critical examination of the popular conceptions of SAI and CN models suggests that neither of these extreme positions is justified (Boden, 1994; Honavar and Uhr, 1990a; Honavar, 1994b; Uhr and Honavar, 1994). Recent attempts at reconciling SAI and CN approaches to modelling cognition and engineering intelligent systems (Honavar and Uhr, 1994; Sun and Bookman, 1994; Levine and Aparicioiv, 1994; Goonatilake and Khebbal, 1994; Medsker, 1994) are strongly suggestive of the potential benefits of exploring computational models that judiciously integrate aspects of both. The rich and interesting space of designs that combine concepts, constructs, techniques and technologies drawn from both SAI and CN invite systematic theoretical as well as experimental exploration in the context of a broad range of problems in perception, knowledge representation and inference, robotics, language, and learning, and ultimately, integrated systems that display what might be considered human--like general intelligence. This chapter examines how today's CN models can be extended to provide a framework for such an exploration. Disciplines Artificial Intelligence and Robotics This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cs_techreports/76 Symbolic Artificial Intelligence, Connectionist Networks and Beyond TR94-16 Vasant Honavar and Leonard Uhr
منابع مشابه
The Core Method: Connectionist Model Generation for First-Order Logic Programs
Research into the processing of symbolic knowledge by means of connectionist networks aims at systems which combine the declarative nature of logicbased artificial intelligence with the robustness and trainability of artificial neural networks. This endeavour has been addressed quite successfully in the past for propositional knowledge representation and reasoning tasks. However, as soon as the...
متن کاملThe Grand Challenges and Myths of Neural-Symbolic Computation
The construction of computational cognitive models integrating the connectionist and symbolic paradigms of artificial intelligence is a standing research issue in the field. The combination of logic-based inference and connectionist learning systems may lead to the construction of semantically sound computational cognitive models in artificial intelligence, computer and cognitive sciences. Over...
متن کاملInstruction and High-Level Learning in Connectionist Networks
Essentially all work in connectionist learning up to now has been induction from examples (e.g. Hinton 1987), but instruction is as important in symbolic artificial intelligence (e.g. Mostow 1986, Rychener 1986) as it is in nature. This paper describes an implemented connectionist learning system that transforms an instruction expressed in a description language into an input for a connectionis...
متن کاملA Connectionist Cognitive Model for Temporal Synchronisation and Learning
The importance of the efforts towards integrating the symbolic and connectionist paradigms of artificial intelligence has been widely recognised. Integration may lead to more effective and richer cognitive computational models, and to a better understanding of the processes of artificial intelligence across the field. This paper presents a new model for the representation, computation, and lear...
متن کامل